list.pony
class List[A] is Seq[A]
"""
A doubly linked list.
(The following is paraphrased from [Wikipedia](https://en.wikipedia.org/wiki/Doubly_linked_list).)
A doubly linked list is a linked data structure that consists of a set of sequentially
linked records called nodes. (Implemented in Ponylang via the collections.ListNode class.) Each
node contains four fields: two link fields (references to the previous and to the next node in
the sequence of nodes), one data field, and the reference to the in which it resides. A doubly
linked list can be conceptualized as two singly linked lists formed from the same data items, but
in opposite sequential orders.
As you would expect. functions are provided to perform all the common list operations such as
creation, traversal, node addition and removal, iteration, mapping, filtering, etc.
## Example program
There are a _lot_ of functions in List. The following code picks out a few common examples.
It outputs:
A new empty list has 0 nodes.
Adding one node to our empty list means it now has a size of 1.
The first (index 0) node has the value: A single String
A list created by appending our second single-node list onto our first has size: 2
The List nodes of our first list are now:
A single String
Another String
Append *moves* the nodes from the second list so that now has 0 nodes.
A list created from an array of three strings has size: 3
First
Second
Third
Mapping over our three-node list produces a new list of size: 3
Each node-value in the resulting list is now far more exciting:
First BOOM!
Second BOOM!
Third BOOM!
Filtering our three-node list produces a new list of size: 2
Second BOOM!
Third BOOM!
The size of our first partitioned list (matches predicate): 1
The size of our second partitioned list (doesn't match predicate): 1
Our matching partition elements are:
Second BOOM!
```pony
use "collections"
actor Main
new create(env:Env) =>
// Create a new empty List of type String
let my_list = List[String]()
env.out.print("A new empty list has " + my_list.size().string() + " nodes.") // 0
// Push a String literal onto our empty List
my_list.push("A single String")
env.out.print("Adding one node to our empty list means it now has a size of "
+ my_list.size().string() + ".") // 1
// Get the first element of our List
try env.out.print("The first (index 0) node has the value: "
+ my_list.index(0)?()?.string()) end // A single String
// Create a second List from a single String literal
let my_second_list = List[String].unit("Another String")
// Append the second List to the first
my_list.append_list(my_second_list)
env.out.print("A list created by appending our second single-node list onto our first has size: "
+ my_list.size().string()) // 2
env.out.print("The List nodes of our first list are now:")
for n in my_list.values() do
env.out.print("\t" + n.string())
end
// NOTE: this _moves_ the elements so second_list consequently ends up empty
env.out.print("Append *moves* the nodes from the second list so that now has "
+ my_second_list.size().string() + " nodes.") // 0
// Create a third List from a Seq(ence)
// (In this case a literal array of Strings)
let my_third_list = List[String].from(["First"; "Second"; "Third"])
env.out.print("A list created from an array of three strings has size: "
+ my_third_list.size().string()) // 3
for n in my_third_list.values() do
env.out.print("\t" + n.string())
end
// Map over the third List, concatenating some "BOOM!'s" into a new List
let new_list = my_third_list.map[String]({ (n) => n + " BOOM!" })
env.out.print("Mapping over our three-node list produces a new list of size: "
+ new_list.size().string()) // 3
env.out.print("Each node-value in the resulting list is now far more exciting:")
for n in new_list.values() do
env.out.print("\t" + n.string())
end
// Filter the new list to extract 2 elements
let filtered_list = new_list.filter({ (n) => n.string().contains("d BOOM!") })
env.out.print("Filtering our three-node list produces a new list of size: "
+ filtered_list.size().string()) // 2
for n in filtered_list.values() do
env.out.print("\t" + n.string()) // Second BOOM!\nThird BOOM!
end
// Partition the filtered list
let partitioned_lists = filtered_list.partition({ (n) => n.string().contains("Second") })
env.out.print("The size of our first partitioned list (matches predicate): " + partitioned_lists._1.size().string()) // 1
env.out.print("The size of our second partitioned list (doesn't match predicate): " + partitioned_lists._2.size().string()) // 1
env.out.print("Our matching partition elements are:")
for n in partitioned_lists._1.values() do
env.out.print("\t" + n.string()) // Second BOOM!
end
```
"""
var _head: (ListNode[A] | None) = None
var _tail: (ListNode[A] | None) = None
var _size: USize = 0
new create(len: USize = 0) =>
"""
Do nothing, but be compatible with Seq.
"""
None
new unit(a: A) =>
"""
Builds a new list from an element.
"""
push(consume a)
new from(seq: Array[A^]) =>
"""
Builds a new list from the sequence passed in.
"""
for value in seq.values() do
push(consume value)
end
fun ref reserve(len: USize) =>
"""
Do nothing, but be compatible with Seq.
"""
None
fun size(): USize =>
"""
Returns the number of items in the list.
"""
_size
fun apply(i: USize = 0): this->A ? =>
"""
Get the i-th element, raising an error if the index is out of bounds.
"""
index(i)?()?
fun ref update(i: USize, value: A): A^ ? =>
"""
Change the i-th element, raising an error if the index is out of bounds.
Returns the previous value, which may be None if the node has been popped
but left on the list.
"""
index(i)?()? = consume value
fun index(i: USize): this->ListNode[A] ? =>
"""
Gets the i-th node, raising an error if the index is out of bounds.
"""
if i >= _size then
error
end
var node = _head as this->ListNode[A]
var j = USize(0)
while j < i do
node = node.next() as this->ListNode[A]
j = j + 1
end
node
fun ref remove(i: USize): ListNode[A] ? =>
"""
Remove the i-th node, raising an error if the index is out of bounds.
The removed node is returned.
"""
index(i)? .> remove()
fun ref clear() =>
"""
Empties the list.
"""
_head = None
_tail = None
_size = 0
fun head(): this->ListNode[A] ? =>
"""
Get the head of the list.
"""
_head as this->ListNode[A]
fun tail(): this->ListNode[A] ? =>
"""
Get the tail of the list.
"""
_tail as this->ListNode[A]
fun ref prepend_node(node: ListNode[A]) =>
"""
Adds a node to the head of the list.
"""
match _head
| let head': ListNode[A] =>
head'.prepend(node)
else
_set_both(node)
end
fun ref append_node(node: ListNode[A]) =>
"""
Adds a node to the tail of the list.
"""
match _tail
| let tail': ListNode[A] =>
tail'.append(node)
else
_set_both(node)
end
fun ref append_list(that: List[A]) =>
"""
Remove all nodes from that and append them to this.
"""
if this isnt that then
while that._size > 0 do
try append_node(that.head()?) end
end
end
fun ref prepend_list(that: List[A]) =>
"""
Remove all nodes from that and prepend them to this.
"""
if this isnt that then
while that._size > 0 do
try prepend_node(that.tail()?) end
end
end
fun ref push(a: A) =>
"""
Adds a value to the tail of the list.
"""
append_node(ListNode[A](consume a))
fun ref pop(): A^ ? =>
"""
Removes a value from the tail of the list.
"""
tail()? .> remove().pop()?
fun ref unshift(a: A) =>
"""
Adds a value to the head of the list.
"""
prepend_node(ListNode[A](consume a))
fun ref shift(): A^ ? =>
"""
Removes a value from the head of the list.
"""
head()? .> remove().pop()?
fun ref append(
seq: (ReadSeq[A] & ReadElement[A^]),
offset: USize = 0,
len: USize = -1)
=>
"""
Append len elements from a sequence, starting from the given offset.
"""
if offset >= seq.size() then
return
end
let copy_len = len.min(seq.size() - offset)
reserve(_size + copy_len)
let cap = copy_len + offset
var i = offset
try
while i < cap do
push(seq(i)?)
i = i + 1
end
end
fun ref concat(iter: Iterator[A^], offset: USize = 0, len: USize = -1) =>
"""
Add len iterated elements to the end of the list, starting from the given
offset.
"""
try
for i in Range(0, offset) do
if iter.has_next() then
iter.next()?
else
return
end
end
for i in Range(0, len) do
if iter.has_next() then
push(iter.next()?)
else
return
end
end
end
fun ref truncate(len: USize) =>
"""
Truncate the list to the given length, discarding excess elements.
If the list is already smaller than len, do nothing.
"""
try
while _size > len do
pop()?
end
end
fun clone(): List[this->A!]^ =>
"""
Clone the list.
"""
let out = List[this->A!]
for v in values() do
out.push(v)
end
out
fun map[B](f: {(this->A!): B^} box): List[B]^ =>
"""
Builds a new list by applying a function to every member of the list.
"""
try
_map[B](head()?, f, List[B])
else
List[B]
end
fun _map[B](
ln: this->ListNode[A],
f: {(this->A!): B^} box,
acc: List[B])
: List[B]^
=>
"""
Private helper for map, recursively working with ListNodes.
"""
try acc.push(f(ln()?)) end
try
_map[B](ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun flat_map[B](f: {(this->A!): List[B]} box): List[B]^ =>
"""
Builds a new list by applying a function to every member of the list and
using the elements of the resulting lists.
"""
try
_flat_map[B](head()?, f, List[B])
else
List[B]
end
fun _flat_map[B](
ln: this->ListNode[A],
f: {(this->A!): List[B]} box,
acc: List[B]): List[B]^
=>
"""
Private helper for flat_map, recursively working with ListNodes.
"""
try acc.append_list(f(ln()?)) end
try
_flat_map[B](ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun filter(f: {(this->A!): Bool} box): List[this->A!]^ =>
"""
Builds a new list with those elements that satisfy a provided predicate.
"""
try
_filter(head()?, f, List[this->A!])
else
List[this->A!]
end
fun _filter(
ln: this->ListNode[A],
f: {(this->A!): Bool} box,
acc: List[this->A!]): List[this->A!]
=>
"""
Private helper for filter, recursively working with ListNodes.
"""
try
let cur = ln()?
if f(cur) then acc.push(cur) end
end
try
_filter(ln.next() as this->ListNode[A], f, acc)
else
acc
end
fun fold[B](f: {(B!, this->A!): B^} box, acc: B): B =>
"""
Folds the elements of the list using the supplied function.
"""
let h = try
head()?
else
return acc
end
_fold[B](h, f, consume acc)
fun _fold[B](
ln: this->ListNode[A],
f: {(B!, this->A!): B^} box,
acc: B)
: B
=>
"""
Private helper for fold, recursively working with ListNodes.
"""
let nextAcc: B = try f(acc, ln()?) else consume acc end
let h = try
ln.next() as this->ListNode[A]
else
return nextAcc
end
_fold[B](h, f, consume nextAcc)
fun every(f: {(this->A!): Bool} box): Bool =>
"""
Returns true if every element satisfies the provided predicate, false
otherwise.
"""
try
_every(head()?, f)
else
true
end
fun _every(ln: this->ListNode[A], f: {(this->A!): Bool} box): Bool =>
"""
Private helper for every, recursively working with ListNodes.
"""
try
if not(f(ln()?)) then
false
else
_every(ln.next() as this->ListNode[A], f)
end
else
true
end
fun exists(f: {(this->A!): Bool} box): Bool =>
"""
Returns true if at least one element satisfies the provided predicate,
false otherwise.
"""
try
_exists(head()?, f)
else
false
end
fun _exists(ln: this->ListNode[A], f: {(this->A!): Bool} box): Bool =>
"""
Private helper for exists, recursively working with ListNodes.
"""
try
if f(ln()?) then
true
else
_exists(ln.next() as this->ListNode[A], f)
end
else
false
end
fun partition(
f: {(this->A!): Bool} box)
: (List[this->A!]^, List[this->A!]^)
=>
"""
Builds a pair of lists, the first of which is made up of the elements
satisfying the supplied predicate and the second of which is made up of
those that do not.
"""
let l1 = List[this->A!]
let l2 = List[this->A!]
for item in values() do
if f(item) then l1.push(item) else l2.push(item) end
end
(l1, l2)
fun drop(n: USize): List[this->A!]^ =>
"""
Builds a list by dropping the first n elements.
"""
let l = List[this->A!]
if size() > n then
try
var node = index(n)?
for i in Range(n, size()) do
l.push(node()?)
node = node.next() as this->ListNode[A]
end
end
end
l
fun take(n: USize): List[this->A!] =>
"""
Builds a list of the first n elements.
"""
let l = List[this->A!]
if size() > 0 then
try
var node = head()?
for i in Range(0, n.min(size())) do
l.push(node()?)
node = node.next() as this->ListNode[A]
end
end
end
l
fun take_while(f: {(this->A!): Bool} box): List[this->A!]^ =>
"""
Builds a list of elements satisfying the provided predicate until one does
not.
"""
let l = List[this->A!]
if size() > 0 then
try
var node = head()?
for i in Range(0, size()) do
let item = node()?
if f(item) then l.push(item) else return l end
node = node.next() as this->ListNode[A]
end
end
end
l
fun reverse(): List[this->A!]^ =>
"""
Builds a new list by reversing the elements in the list.
"""
try
_reverse(head()?, List[this->A!])
else
List[this->A!]
end
fun _reverse(ln: this->ListNode[A], acc: List[this->A!]): List[this->A!]^ =>
"""
Private helper for reverse, recursively working with ListNodes.
"""
try acc.unshift(ln()?) end
try
_reverse(ln.next() as this->ListNode[A], acc)
else
acc
end
fun contains[B: (A & HasEq[A!] #read) = A](a: box->B): Bool =>
"""
Returns true if the list contains the provided element, false otherwise.
"""
try
_contains[B](head()?, a)
else
false
end
fun _contains[B: (A & HasEq[A!] #read) = A](
ln: this->ListNode[A],
a: box->B)
: Bool
=>
"""
Private helper for contains, recursively working with ListNodes.
"""
try
if a == ln()? then
true
else
_contains[B](ln.next() as this->ListNode[A], a)
end
else
false
end
fun nodes(): ListNodes[A, this->ListNode[A]]^ =>
"""
Return an iterator on the nodes in the list.
"""
ListNodes[A, this->ListNode[A]](_head)
fun rnodes(): ListNodes[A, this->ListNode[A]]^ =>
"""
Return an iterator on the nodes in the list.
"""
ListNodes[A, this->ListNode[A]](_head, true)
fun values(): ListValues[A, this->ListNode[A]]^ =>
"""
Return an iterator on the values in the list.
"""
ListValues[A, this->ListNode[A]](_head)
fun rvalues(): ListValues[A, this->ListNode[A]]^ =>
"""
Return an iterator on the values in the list.
"""
ListValues[A, this->ListNode[A]](_head, true)
fun ref _increment() =>
_size = _size + 1
fun ref _decrement() =>
_size = _size - 1
fun ref _set_head(head': (ListNode[A] | None)) =>
_head = head'
fun ref _set_tail(tail': (ListNode[A] | None)) =>
_tail = tail'
fun ref _set_both(node: ListNode[A]) =>
node._set_list(this)
_head = node
_tail = node
_size = 1
class ListNodes[A, N: ListNode[A] #read] is Iterator[N]
"""
Iterate over the nodes in a list.
"""
var _next: (N | None)
let _reverse: Bool
new create(head: (N | None), reverse: Bool = false) =>
"""
Keep the next list node to be examined.
"""
_next = head
_reverse = reverse
fun has_next(): Bool =>
"""
If we have a list node, we have more values.
"""
_next isnt None
fun ref next(): N ? =>
"""
Get the list node and replace it with the next one.
"""
match _next
| let next': N =>
if _reverse then
_next = next'.prev()
else
_next = next'.next()
end
next'
else
error
end
class ListValues[A, N: ListNode[A] #read] is Iterator[N->A]
"""
Iterate over the values in a list.
"""
var _next: (N | None)
let _reverse: Bool
new create(head: (N | None), reverse: Bool = false) =>
"""
Keep the next list node to be examined.
"""
_next = head
_reverse = reverse
fun has_next(): Bool =>
"""
If we have a list node, we have more values.
"""
_next isnt None
fun ref next(): N->A ? =>
"""
Get the value of the list node and replace it with the next one.
"""
match _next
| let next': N =>
if _reverse then
_next = next'.prev()
else
_next = next'.next()
end
next'()?
else
error
end